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1 Properties of Linear Groups

1.1 The special linear group SLn(F )

Let Fq be the field with q elements, where q is a prime power. Later on, we will prove that
a unique such field exists for each q.

Proposition 1.1. SLn(F ) is generated by elementary matrices {{Ei,j(α) : i 6= j, α ∈ F}.

Proof. Let U be the unipotent group of upper triangular matrices with 1s as a diagonal.
U E B, the Borel subgroup of upper triangular matrices. U is nilpotent. Uab ∼= F, which
is generated by the images of Ei,i+1(α). So U is generated by the elementary matrices.

GLn(F ) = BWB, where W = ι(Sn), where ι : Sn → GLn(F ) sends σ to its permutation
matrix. In fact, GLn(F ) =

∐
w∈W BwB, and G = SLn(F ) =

∐
w∈ι(An)

B′wB′, where

B′ = B ∩G. So B ∼= U o Fn, where Fn is thought of as the diagonal matrices.
It suffices to show that the diagonal matrices or determinant 1 and permutation matrices

of determinant 1 are in the subgroup generated by elementary matrices. For diagonal
matrices, it suffices to show that we can get matrices of this form:
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with only 2 non-identity entries. Note that

[E1,2(α), E2,1(α)] =

[
1 + α α

1 1

] [
1 + α −α
−1 1

]
=

[
1 + α+ α2 −α2

α 1− α

]
,
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so

E1,2

(
α2

1− α

)
· [E1,2(α), E2,1(α)] · E2,1

(
−α

1− α

)
=

[
(1− α)−1 0

0 1− α

]
.

To get permutation matrices, we do something like this:1 0 0
0 1 0
0 0 1

→
1 0 0

0 1 1
0 0 1

→
1 0 0

0 1 1
0 −1 0

→
1 0 0

0 0 1
0 −1 0


→

1 0 0
0 1 1
1 −1 0

→
0 1 0

0 0 1
1 −1 0

→
0 1 0

0 0 1
1 0 0

 .
Proposition 1.2. The groups 〈{Ei,j(α) : α ∈ F}〉 are all conjugate.

Proof. Let σ be an even permutation. Then ι(σ)Ei,jι(σ)−1 = Eσ(i),σ(j)(α); this is just a
change of basis. The rest is an exercise.

Proposition 1.3. SLn(F ) = [GLn F,GLn(F )] unless n = 2 and F ∼= F2 or F3.

Proof. Note that Ei,j(α) = [Ei,k(α).Ek,j(α)] with k 6= i, j for n ≥ 3. For n = 2, we have[[
α 0
0 α−1

]
,

[
1 β
0 1

]]
=

[
α αβ
0 α−1

] [
α−1 −α−1β

0 α

]
=

[
1 (α2 − 1)β
0 1

]
.

We can choose β 6= 0 and α2 6= 1 with α 6= 0 iff F ∼= F2 or F3.

Proposition 1.4. SLn(F ) acts doubly transitively on the set of 1-dimensional subspaces
of Fn.

Proof. Given pairs of distinct nonzero vectors (v1, v2), (w1, w2) with Fv1 6= Fv2 and Fw1 6=
Fw2, there exists an A ∈ GLn(F ) such that Avi = wi for i = 1, 2. Follow this by the matrix
sending w1 7→ det(A)−1w1, w2 7→ w2, and all other basis elements to themselves.

1.2 The projective special linear group PSLn(Fq).

Theorem 1.1. PSLn(Fq) is simple for n ≥ 2, unless n = 2 and q ∈ {2, 3}.

Proof. Let P be the stabilizer of Fqe1 in G = SLn(Fq). These are matrices (with determi-
nant 1) where the first column has zeros everywhere except the top left entry. P is maximal
< G, and P =

∐
w∈P∩ι(An)

B′wB′. Consider the subgroup K E P of matrices with 1s on
the diagonal and 0s above the diagonal except possibly for the first row.

Suppose N E G. If N ≤ P , then N = gNg−1 stabilizes g · Fqe1 for all g ∈ G. So N
stabilizes Fqei for all i. Also, N stabilizes Fq(ei + ej) for all i 6= j. So N ⊆ Z(SLn(Fq)).
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If N 6≤ P , then PN = G, since G is maximal. Then KN/N E PN/N = G/N , so
KN E G. We have that E1,j(α) ∈ K for all α ∈ Fq and j ≥ 2. So since KN is normal,
Ei,j(α) ∈ KN for all i 6= j and α ∈ F by our second proposition. Then G = KN by the
first proposition. So G/N ∼= K/(K ∩N) is abelian. Then N ≥ G′ = SLn(Fq) by the third
proposition. So N = G.
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